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A method is proposed for calculating the diffusion resistance coefficient for 
porous materials having a structure with interpenetrating components and for 
granular systems. 

In the study of the diffusion of gases in porous bodies, it is customary to use the 
concept of the diffusion resistance coefficient ~ as a characteristic of diffusive transfer$ 
This coefficient is equal to the ratio of the diffusion coefficient of a gas in open space 
to its diffusion coefficient in the porous body: 

O 

} l =  D p o r  (l) 

The coefficient ~ depends both on the porosity of the material m and on its structural 
characteristics, particularly on the sinuousness T and the opening 8 of the pores. Different 
relations have been presented in various studies to determine ~. 

Kreisher [i] introduced ~ as a structural factor characterizing the structure of the 
material and determined by the expression 

where the quantities ~l and ~s are reliably determined from the following formulas for 
materials with a relatively uniform structure 

(12) 

l 
illz = ~, P ' s =  �9 (13) 

m 

Thus, Eq. (i) takes the form 

~' : (4 )  

It was reported in [2] that Bird had found the following empirical relation: 

1 
- (5) 

0,58m 

The same study presented a formula found by Brabbit and Hertis for ~ in relation to porosity, 
opening, and sinuousness: 

T 2 

m6 (6) 

Taking the most likely value d = 0.75, while 1 < T < 1.3, they obtained 

l ~, = - -  ( 1 7 )  
0,57m 

Leningrad Institute of Precision Mechanics and Optics. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 55, No. 6, pp. 948-952, December, 1988. Original article submitted 
July 16, 1987. 

0022-0841/88/5506-1381512.50 �9 1989 Plenum Publishing Corporation 1381 



a 
L, 

b Q 

/ 

a b 

2 

b) 

Fig. i. Model representation of porous materials: a) 1/8 of a 
unit cell of a structure with interpenetrating components; b) 
averaged element of the structure of a granular material. 

Equations (5)-(7) do not have an asymptote at m = i, at which ~ should be equal to 
unity. Also, there was no consideration of the dependence of T and 6 on m. 

Her% we propose a method of calculating ~ for granular systems and for materials having 
a structure with interpenetrating components, i.e., the skeleton and the pore space. Using 
electrical resistance as an analogy, we introduce the diffusion resistance R = L/DS of a 
rectilinear channel of length L and cross-sectional area S, and we express the parameter 
through this resistance. The flow of gas Jpor through the porous body: 

Jpor---D 1 I dn I T ~ X  SP ~ 

I dn li s the absolute value of the concentration gradient; is the area of the mid- 
i 

where -~x Spor 
i 

section of the pores. 

When we replace the actual pore space by an effective rectilinear pore channel of 
length L, T = i, and cross-sectional area S and we introduce a certain effective diffusion 
coefficient Dpor, we obtain the following for the gas flow 

SOt ~--- Opor I dt~ I Spo, . 

Using the last two expressions and considering the relationsip between the thickness L of 
the effective rectilinear pore channel, the sinuousness of the pore r, the length of the 
pore I = TL, and Eq. (i), ~e obtain an expression for B: 

D S L* SD Rpor Lz 
~ - -  = T  - - : - -  , P ~ r . = - -  

Dpo r Spor DSpo r L R OSpor 
(8) 

where Rpor is the diffusion resistance of the porous body. 

We will analyze the diffusion process in 1/8 of a unit cell of a structure with inter~ 
penetrating components (Fig. la). The adiabatic planes a--a and b--b, parallel to the general 
direction of flow of the diffusing gas and the side walls of the cell, are subdivided by the 
walls into four individual, parallel-connected sections i, 2, 3, and 4. Since sections i, 
2, and 3 are impermeable to the diffusing gas, the expression for the diffusion resistance 
of the unit cell will have the form 

L 
P'P~ D(1--c)2 L z " (9) 

where the parameter c = A/L is dete2mined from the solution of the cubic equation [3]: 
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m = 2c 3 - -  3c  2 + 1. ( 1 0 )  

The diffusion resistance of the same volume in open space is equal to: 

L 
R = ( 1 1 )  

DL 2 

Using (9) and (11) and allowing for (8), we obtain a formula to find U in the case 
of adiabatic fragmentation of the unit cell 

1 
~a-- - -  (12) 

( 1 - - c F  

Proceeding in a similar manner, we can obtain expressions for the diffusion resistance 

coefficient in the eases of isothermal and combination fragmentation. 

In the case of isothermal fragmentation, we draw the isopotential plane c-c perpendi- 

cular to the mean diffusion flow. As a result, the expression for ~i takes the form: 

c I 
~ i =  - -  F - -  (113) (1 - - c )  2 1 + c  

Another possible variant of subdivision of the unit cell is combination (adiabatic-- 
isothermal) fragmentation. Here, the a--a plane is taken to be impermeable for the stream- 
line, while the c--c plane is taken to be isothermal. In this case, the diffusion resistance 

coefficient will be determined by the expression: 

c 

Pc---- l~- ( l - - c )  ~ (14) 

Let us determine the coefficient ~ for granular systems. In examining the process of 

heat transfer in granular materials, we isolate an average element (Fig. Ib) with the geo- 
metric parameters [3]: 

r3 2 ~ l~  c -- 1 r4 Y~ 
Y3----- -- , Y~ = -- 3 /  ' 

r N c r i /  1 -- m 
(15) 

Nc= m+ 3§ lOre+ 9 
2m 
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For simplicity, we assume that the particles are in point contact with one another. 
We subdivide the average element by adiabatic cylindrical surfaces a--a and b--b, parallel to 
the direction of flow of the diffusing gas (surface b--b coincides with the side wall of the 
element), thus obtaining two individual, parallel-connected sections I and 2. Considering 
that section i is impermeable to the gas, we write the expression for the diffusion resist- 
ance of the average element: 

r 
RP ~ ~D(r ]-r~) (16) 

The diffusion resistance R is determined as follows: 

r 
I~ = ~Dr2 . (117) 

Using (8), (16), and (17), we finally obtain a formula to determine ~ for a granular 
system: 

~g= y~_y~ (~18) 

Figure 2 shows theoretical relations and experimental data for ~ for different materials 
[i, 2, 4]. Calculations with the formulas for adiabatic and isothermal subdivision of the 
unit cell (relations 1 and 2) establish the upper and lower boundaries of the theoretical 

values of ~. The combination subdivision (relation 3) gives results intermediate between 
~a and ~i" The values of ~g (relation 4) obtained from Eq. (18) for granular systems are 
close to the values of ~c. 

It is evident that a fairly large group of materials is described well by the theore- 
tical relations. At the same time, the theoret&cal results differ markedly from the experi- 
mental data for a number of materials (this is especially true of chromium and half-chromium 
leather, coffee grounds, chocolate pudding, cardboard, and several other materials). This 
can be attributed to differences in the structures of the given materials and the structures 
of systems with interpenetrating components in the sense that the sinuousness of these 
materials T is not equal to unity (in the model, T = I). Other reasons for the discrepancy 
may be the presence of open porosity, the small number of through pores (many "dead ends" 
and clusters in the pore Space), and the presence of narrow bridges of material between the 
pores. This is turn means that additional information is needed ~n the structure of the 
material. Accordingly, it will be necessary to conduct further studies to develop a method 
suitable for calculating the diffusion resistance cQefficient ~. 

Equation (14) can be recommended for evaluating ~ for granular systems and for materials 
having a structure similarto that of systems withinterpenetrating components (skeleton and 
p~re space). 

NOTATION 

~, gas diffusion resistance coefficient for a porous body; ~a, ~i, Dc, ~g, diffusion 
resistance coefficients in a unit cell with different methods of subdivision (adiabatic, 
isothermal, combination) and in an average element for granular systems; D, Dpor, diffusion 
coefficients in open space and in the porous body, m2/sec; m, porosity of the material; 6, 
opening of the pores; T, sinuousness of the pores; R, R~or , diffusion resistance of an iso- 
lated section in open space and in the porous body, sec~m3; L, A, geometric parameters of a 
unit cell, m; c, relative dimension of an edge of the unit cell; S, S~or, cross-sectional 
area of the isolated section, pore, m~; n, concentration of gas, kg/m ; Jpor, flow of gas 
through the porous body, kg/sec; r, r3, r~, geometric parameters of the average element, m; 
N c, coordination number. 
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STEADY-STATE %40-DIMENSIONAL DIFFUSION OF A RADIOACTIVE IMPURITY 

IN A CHANNEL WITH SORBING WALLS 

O. V. Ivanov, V. D. Akin'shin, 
and V. D. Seleznev 

UDC 533.6 

We Consider the analytical solution of the problem of steady-state diffusion of a 
radioactive impurity in a gas-filled channel of finite length with sorbing walls, 
with allowance for surface diffusion. The conditions under which the two-dimen- 
sional problem becomes one-dimenSional are found. 

The study of diffusion of impurity components in gas-filled porous media is of great 
importance in developing a whole range of technologies associated with processes of drying, 
absorption, desorption, and heterogeneous catalysis, as well as in solving radioecological 
problems. The simplest model of capiilary~por0us media in the form of a set of cylindrical 
capillaries allows the discussion to be confined to diffusion in a single capillary. Further 
analysis is carried out, as a rule, on the assumption that the bulk and adsorption phases 
are in equilibrium in each cross section of the capillary, which allows the problem to be 
reduced to a one-dimensional formulation with the introduction of an effective diffusion co- 
efficient, which makes allowance for the effect which both absorption and diffusion on the 
surface of the capillary have on the total diffusion flux [1-3]. In the case of steady-state 
diffusion of a radioactive impurity as well as in the case of unsteady-state diffusion of a stable 
impurity, however, the local equilibrium in an element of length of the channel may be dis- 
rupted substantially and as a result the contributions of volume and surface diffusion to 
the total diffusion flux through the capillary are redistributed considerably. In our study 
we find the parameter that specifies the degree of such nonequilibrium in the case of steady- 
state diffusion of a radioactive impurity and examine the conditions for the transition to 
the one-dimensional formulation. 

Let us consider a cylindrical channel of length L and radius ro, filled with a motion- 
less inert gas. Sappose thatthe Concentration of the radioactive impurity is maintained 
at co at the beginning of the channel and is zero at the end of the channel. In accordance 
~ith the geometry of the problem we chose a cylindrical coordinate system, directing the z 
axis along the axes of tNe channel. Then steady-state diffusion of this impurity in the 
channel, complicated by adsorption on the channel walls and diffusion along the channel sur- 
face, can be described by the system of equations 

OZc OZc 1 Oc 
- -  + 4 gc  (x, p) = O, 
Ox z ~ p Op (1) 

.d~c, [ Oc 
8 --pc,(x)--s |-El-! =0, (2) 

dx  = \ u p / o = 1  
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